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1. Imputation - KNNImputer

Dataset

Encodage
LabelEncoder

OneHotEncoder
FeatureHasher

../..

Var quantitative

Var qualitative 
(texte)

Pré-processing
Mise à l’échelle
StandardScaler
MinMaxScaler

PowerTransformer
../..

Traitement valeurs 
manquantes

KNNImputer

Pour chaque valeur manquante d'un point de données :
1. KNN Imputer cartographie l'ensemble de données à l'exclusion des éléments ayant des valeurs manquantes 

dans l'espace de coordonnées à n dimensions 
2.   Calcule la distance euclidienne (par défaut) des points les plus proches de ce point de données. 
3.   Imputation des valeurs manquantes par la moyenne des éléments pertinents pour ces points les plus proches

Basé sur l’algorithme K-Nearest Neighbors



1. Imputation - KNNImputer

• Encodage pour var. qualitatives.
• Mise à l’échelle pour les variables quantitatives.
• Inversion de la mise à l’échelle pour avoir les 

vraies valeurs.
• Basé sur hyper-paramètre k  tri-it-all
• Hypothèse de relations entre les entités
• Mauvaises prédictions si prédicteurs faibles ou 

fortes relations entre les entités
• Sujet à la malédiction (fléau)  de la 

dimensionnalité

• Imputer des valeurs autres que 
constantes (numériques ou 
modalités, moyenne, mode ou 
médiane.

MissForest ? 
Appliquée sur données mixtes,
Encodage, pas mise à l’échelle
Pas d’hypothèse de relation entre 
entités
Robuste aux bruits et à la 
mutlicolinéarité
Non paramétrique : pas de réglages
Grande dimension
Mais plus long petits datasets

https://ichi.pro/fr/missforest-le-meilleur-algorithme-d-
imputation-des-donnees-manquantes-5291693485779

NaNimputer?
Verstack
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Mettre sur une même échelle toutes les données quantitatives 

Rendre les plages cohérentes entre les variables

Avoir une influence similaire des variables sur les modèles

Conserver les rapports de distance

Améliorer les performances et stabiliser le modèle

2. Normalisation : pourquoi ?



2. Normalisation : comment ?

Scaler Caractéristiques

Min Max Scaler
sklearn.preprocessing.MinMaxScaler

Std faible, distrib. non normale, [0,1]
Sensible oultiers

Standard Scaler
sklearn.preprocessing.StandardScaler

Std 1, distrib. Normale centrée en 0
Sensible oultiers (Z-Score)

Robust Scaler
sklearn.preprocessing.RobustScaler

Std faible, distrib. non gaussienne
Insensible oultiers

Max Abs Scaler
sklearn.preprocessing.MaxAbsScaler

Distrib. Éparse,centrée en 0, [-1,1]
Insensible oultiers

Power Transformer Scaler
sklearn.preprocessing.PowerTransformer

trouve le facteur d'échelle optimal pour stabiliser la variance et minimiser 
l'asymétrie grâce à l'estimation du maximum de vraisemblance. 
rendre les données plus gaussiennes. 

Quantile Transformer Scaler
sklearn.preprocessing.QuantileTransformer

1. Calcule la fonction de distribution cumulative de la variable
2. Il utilise ce cdf pour faire correspondre les valeurs à une distribution 
normale
3. Établit une correspondance entre les valeurs obtenues et la distribution de 
sortie souhaitée à l'aide de la fonction quantile associée
Distrib. Normale, large dataset
Insensible oultiers

Unit Vector Scaler
sklearn.preprocessing.normalize

Mise à l'échelle se fait en considérant que le vecteur d'élément entier est de 
longueur unitaire. [0,1]

Normalizer Scaler
sklearn.preprocessing.Normalizer

Normalise selon la norme L1 (manhatan) ou L2 (euclidienne)



Calculer un vecteur de poids 

Scoring

Descente de gradient

Logistic Regression

Linear Regression

Réseaux de neurones

Calculer des distances pour déduire le 
degrée de similarité de deux items

Support Vector Machines (SVM)

K-Nearest Neighbors (KNN)

K-Means (clustering…)

Principal Component Analysis (PCA)

Tree-base algorithm :

Gradient Boosted Decision Trees

Regression Tree

Classification Trees

Random Forests

Linear Discriminant Analysis(LDA)

Naive Bayes

2. Normalisation : algorithme ?
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3. Encodage

* : sklearn.preprocessing - ** : category_encoders



3. Encodage
Encodeur Description +/-

* OneHotEncoder connu sous le nom de variables fictives, est une méthode de 
conversion de variables catégorielles en plusieurs colonnes binaires, 
où un 1 indique la présence de cette ligne appartenant à cette 
catégorie.

- : augmente la dimensionnalité 
mais peu d’information 
(beaucoup 0), les nouvelles 
variables en relation linéaire les 
unes avec les autres  pb 
parallélisme et multi-colinéarité

** HashingEncoder Convertir les données en un vecteur de caractéristiques. Cette 
opération s'effectue à l'aide d'un hachage. Nous appelons cette 
méthode "hachage de caractéristiques" ou "l'astuce du hachage". 
Replace var_cat with col_0 to col_nb_vecteur [index 0 to nb_vecteur] 
which contains either 1 or 0.

+ : si utilisation des modèles 
d'arbres avec de nombreux niveaux 
différents.
- : interprétabilité difficile de la 
contribution de chacun de vos 
niveaux.

* OrdinalEncoder Nous effectuons un encodage ordinal pour nous assurer que 
l'encodage des variables conserve la nature ordinale de la variable. 
Ceci n'est raisonnable que pour les variables ordinales

- : Pas utiliser pour des variables 
non ordinales

** TargetEncoder L'encodage de la cible est un moyen très efficace de représenter une 
colonne catégorique et n'occupe que l'espace d'une seule 
caractéristique. Également connu sous le nom d'encodage de la 
moyenne, chaque valeur de la colonne est remplacée par la valeur 
cible moyenne pour cette catégorie. Cela permet une représentation 
plus directe de la relation entre la variable catégorielle et la variable 
cible

- : rend plus difficile pour le modèle 
l'apprentissage des relations 
entre une variable codée en 
moyenne et une autre variable, 
rend plus difficile pour le modèle 
l'apprentissage des relations 
entre une variable codée en 
moyenne et une autre variable

* : sklearn.preprocessing - ** : category_encoders



3. Encodage
Encodeur Description +/-

** LeaveOneOutEncoder Cette méthode est très similaire à l'encodage des cibles, mais exclut la 
cible de la rangée actuelle lors du calcul de la cible moyenne pour un 
niveau afin de réduire l'effet des valeurs aberrantes. Comme le modèle 
est exposé non seulement à la même valeur pour chaque classe 
encodée, mais aussi à une plage, il apprend à mieux généraliser.

- Puisque chaque valeur de la 
catégorie est remplacée par la 
même valeur numérique, le 
modèle peut avoir tendance à 
s'adapter de manière excessive 
aux valeurs encodées qu'il a vue

** CatBoostEncoder effectue le codage CatBoost pour les caractéristiques catégorielles. Il 
prend en charge les types de cibles suivants : binaires et continues. 
Pour le support des cibles polynomiales, il utilise un 
PolynomialWrapper. Il s'agit d'un codage très similaire à celui du leave-
one-out, mais qui calcule les valeurs "à la volée". Par conséquent, les 
valeurs varient naturellement pendant la phase d'apprentissage et il 
n'est pas nécessaire d'ajouter du bruit aléatoire.

** PolynomialEncoder Le codage polynomial est une forme d'analyse des tendances dans la 
mesure où il recherche les tendances linéaires, quadratiques et 
cubiques de la variable catégorielle. Ce type de système de codage ne 
doit être utilisé qu'avec une variable ordinale dans laquelle les niveaux 
sont également espacés.

** JamesSteinEncoder Comme TargetEncoder. L'encodeur James-Stein évalue la quantité de 
variation dans les exemples de cette catégorie et la compare à la 
variation sur l'ensemble des données.

- Distribution normale
- S'il n'y a que quelques 

exemples par catégorie, cette 
technique ne sera pas 
particulièrement utile. Nous 
devons également être 
conscients que nous devons 
"sauvegarder" la moyenne du 
groupe pour chaque catégorie

* : sklearn.preprocessing - ** : category_encoders



3. Encodage
Encodeur Description +/-

** HelmertEncoder Pour la valeur de la caractéristique, l'estimateur de James-Stein 
renvoie une moyenne pondérée de :
La valeur cible moyenne pour la valeur de la caractéristique observée.
La valeur cible moyenne (indépendamment de la valeur de la 
caractéristique).
L'encodeur James-Stein rétrécit la moyenne vers la moyenne générale. 
Il s'agit d'un codeur basé sur la cible. 

* : sklearn.preprocessing - ** : category_encoders
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4. Bias-variance trade off
problème de minimiser simultanément deux sources d'erreurs de prédiction qui empêchent les 
algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage :
- Le biais = différence entre la prédiction moyenne de notre modèle et la valeur correcte que 

nous essayons de prédire.
- La variance = erreur due à la sensibilité aux petites fluctuations de l’échantillon 

d'apprentissage

 compromis
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5. Modèles - Sheet



5. Modèles - Sheet
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5. Modèles - Généralités

Modélisation

Jeu
D’entraînement

Jeu
de validation

Jeu
de test

Brute Prête
ML

Nettoyage
Imputation
Standard.
Encodage
Transfo.
Feature
engineering

Assemblage, nettoyage, analyse 
pré-processing

Split

Training
Modèles
Candidats

Hyper-
parameter
tuning

Modèles

Training
résultats

Validation
résultats

Tests
résultats

Compare 
Modèles

Model Final

New 
Datas

Prédictions

Prédiction



5. Modèles - Généralités

SPLIT - ENCODAGE/STANDARDISATION : préparation des données au machine learning

JEU 
D’ENTRAÎNEMENT

JEU DE TEST

80%

20%

SPLIT

DONNÉES
NETTOYÉES

1 2 3
ENCODAGE
STANDARDISATION

encoder.fit_transform()
scaler.fit_transform()

encoder.transform()
scaler.transform()

SI VALIDATION CROISEE
LORS DE L’ENTRAÎNEMENT

SPLIT selon le k-Fold

4 k-Folds



5. Modèles - Généralités

Jeu
d’entraînement

Jeu de 
validation

Hyper-
paramètres 
Tuning

Modèles

Training
résultats

Validation
résultats

ENTRAÎNEMENT

Performance 
(Métriques :R2 et MSE)

Compare 
Validation/Tests Résultats

Arbres

ÉVALUATION3Jeu
de test

Tests
Résultats

PRÉDICTIONS2

Compare 
Modèles

SÉLÉCTION4

1

Training
Modèles
Candidats
Cross validation
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5. Modèles - sklearn
Modèle Package Description Gère 

Overfit?
Gère 
outliers?

Gère gd 
nbre var?

adaptive 
learns 
regularizatio
n

Large 
dataset

Non 
linear 

Usage? Usage+? Avantages Désavantage

LinearRegression linear Algorithme des moindres carrés 
ordinaires

Hautement interprétable, aucun 
biais introduit

Les données sont composées de peu 
de valeurs aberrantes
La variance entre les étiquettes de 
sortie est faible
Toutes les caractéristiques d'entrée 
sont non seulement indépendantes 
mais aussi non corrélées.

Facilité 
d'interprétation 
des résultats
Faible niveau de 
complexité

Risque de 
multicolinéarité si les 
caractéristiques 
d'entrée sont 
corrélées.
De petites erreurs ou 
valeurs aberrantes 
dans les valeurs cibles 
peuvent avoir un 
impact considérable 
sur le modèle

Ridge linear
RidgeCV

Les moindres carrés ordinaires avec un 
terme de régularisation L2 ajouté. Le 
poids du terme de régularisation est 
contrôlé par un argument alpha 
supplémentaire.

Oui Prévention de l'overfitting Les données sont composées de 
quelques valeurs aberrantes
Il peut y avoir une certaine corrélation 
entre les caractéristiques d'entrée.
Éviter le surajustement
On veut utiliser toutes les 
caractéristiques pour faire des 
prédictions.

Facile à interpréter 
les résultats
Moins affecté par 
les caractéristiques 
corrélées
Prévient le 
surajustement et 
diminue la variance 
des poids appris

En réduisant la 
variance, il incorpore 
un certain degré de 
biais dans le modèle.
Il peut être difficile 
d'ajuster alpha pour 
atteindre un équilibre 
souhaitable entre les 
MCO et le terme de 
régularisation

Lasso linear
LassoCV
lasso_path
LassoLarsCV
LassoLarsIC
MultiTaskLasso

Algorithme des moindres carrés 
ordinaires avec ajout d'un terme de 
régularisation L1. Le poids du terme de 
régularisation est contrôlé par un 
argument alpha supplémentaire. Le 
poids du terme MCO est inversement 
proportionnel au nombre 
d'échantillons.

Oui Oui Seules quelques caractéristiques 
sont importantes, sélection des 
caractéristiques

Les données sont composées de 
quelques valeurs aberrantes
Il peut y avoir une certaine corrélation 
entre les caractéristiques d'entrée.
Vous souhaitez donner plus de poids à 
quelques caractéristiques importantes 
et ne pas ignorer les caractéristiques 
moins importantes.
Sélection des caractéristiques

Réduit le nombre 
de caractéristiques 
que le modèle 
utilise
Peut gérer de 
grandes quantités 
de caractéristiques
Peut souvent être 
utilisé comme un 
test préliminaire 
pour effectuer une 
sélection de 
caractéristiques

En réduisant la 
variance, incorpore un 
certain degré de biais 
dans le modèle.
Il peut être difficile de 
régler alpha pour 
atteindre un équilibre 
souhaitable entre les 
MCO et le terme de 
régularisation



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre 
var?

adaptive 
learns 
regulariz
ation

Large 
dataset

Non 
linear 

Usage? Usage+? Avantages Désavantage

ElasticNet linear
ElasticNetCV
MultiTaskElasticNet

Moindres carrés ordinaires avec un 
terme de régularisation L1 et L2. Les 
poids des termes de régularisation L1 
et L2 sont contrôlés par un 
paramètre l1_ratio.

Oui Oui Mélange de Ridge et Lasso Les données sont composées de 
quelques valeurs aberrantes
ll peut y avoir une certaine 
corrélation entre les 
caractéristiques d'entrée.
Éviter le surajustement 
Sélection des caractéristiques 

Incorporer les capacités 
de sélection de 
caractéristiques de Lasso 
avec les capacités de 
régularisation de Ridge.

En réduisant la 
variance, incorpore 
un certain degré de 
biais dans le modèle.
Il peut être difficile 
de régler l'alpha pour 
atteindre un équilibre 
souhaitable entre les 
MCO et les termes de 
régularisation.
Coût de calcul plus 
élevé que Ridge ou 
Lasso

Lars (Least Angle Regression) linear
lars_path
lars_path_gram

Une régression pas à pas qui modifie 
les poids des caractéristiques les plus 
corrélées à l'étiquette de sortie à 
chaque étape. Au fur et à mesure des 
étapes, d'autres caractéristiques 
deviennent tout aussi corrélées. 
Lorsque cela se produit, l'algorithme 
se met à jour pour se déplacer dans 
la direction déterminée par les 
angles commutatifs des poids de ces 
caractéristiques.

Oui Plus de caractéristiques que 
d'échantillons de données

Plus de caractéristiques 
d'entrée que d'échantillons de 
données
Les données comportent peu de 
valeurs aberrantes
Peu de variance entre les 
étiquettes de sortie

Les poids des 
caractéristiques 
également corrélées 
sont mis à jour à des 
taux similaires.
Efficacité numérique et 
informatique pour de 
nombreuses 
caractéristiques.
Résultats et étapes de 
formation interprétables

Le bruit ou de petites 
erreurs ou valeurs 
aberrantes dans les 
valeurs cibles 
peuvent avoir un 
impact considérable 
sur le modèle

OrthogonalMatchingPursuit linear
orthogonal_mp

Une régression par étapes vers 
l'avant qui permet à l'utilisateur de 
spécifier un nombre maximal de 
coefficients non nuls ou une valeur 
d'erreur cible à atteindre.

Oui Sélection des caractéristiques Vous cherchez à sélectionner les 
N caractéristiques les plus 
importantes pour représenter 
un modèle composé de 
plusieurs caractéristiques

Peut déterminer les 
caractéristiques les plus 
étroitement liées aux 
étiquettes.
Peut spécifier le nombre 
exact de coefficients non 
nuls à retourner

Applications limitées
Non utilisé très 
souvent (et donc pas 
beaucoup de 
ressources en ligne)



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre var?

adaptive 
learns 
regularization

Large 
dataset

Non linear Usage? Usage+? Avantages Désavantage

BayesianRidge linear Similaire à Ridge, mais le paramètre de 
régularisation est réglé pour s'adapter 
aux données pendant le processus de 
formation.

Oui Oui Ridge mais ne veut pas fixer 
de constante de 
régularisation

Vous recherchez des résultats 
similaires à ceux de Ridge, mais 
vous êtes prêt à sacrifier 
l'interprétabilité pour gagner du 
temps en évitant de tester 
différents poids de régularisation.

Aucun besoin de régler la 
valeur alpha
s'adapte bien aux 
données disponibles

Des résultats moins 
interprétables

ARDRegression linear BayesianRidge avec des valeurs de 
poids plus espacées. Presque comme 
une version de BayesianLasso.

Oui Oui Oui Lasso mais pas de constante 
de régularisation.

Vous recherchez des résultats 
similaires à ceux de Lasso, mais 
vous êtes prêt à sacrifier 
l'interprétabilité pour gagner du 
temps en évitant de tester 
différents poids de termes de 
régularisation.

Il n'est pas nécessaire de 
régler la valeur alpha.
S'adapte bien aux 
données disponibles
Réduit le poids des 
caractéristiques non 
importantes

Résultats moins 
interprétables
Coûteux en termes de 
calcul (ne peut pas 
traiter de très grands 
ensembles de 
données)

SGDRegressor linear Ajusté en minimisant une perte 
empirique régularisée avec une 
descente de gradient stochastique 
(SGD). Le type de fonction de perte 
utilisé peut être changé en utilisant 
l'argument "loss".

Oui Oui Le nombre de 
caractéristiques et 
d'échantillons est très élevé

Avoir un très grand ensemble de 
données et vouloir obtenir 
rapidement des résultats.
Beaucoup de flexibilité pour 
changer entre différentes 
fonctions de perte

Fonctionne bien sur de 
grandes quantités de 
données et de fonctions
Fonction personnalisable 
qui offre différentes 
fonctions de perte

Résultats moins 
interprétables
-Beaucoup de 
paramètres à régler

PassiveAggressiveRegressor linear Ajusté en utilisant une variante de la 
perte charnière. Efficace pour 
l'apprentissage à grande échelle avec 
plusieurs points de données et 
caractéristiques.

Oui Oui Le nombre de 
caractéristiques et 
d'échantillons est très élevé

Vous disposez d'un très grand 
ensemble de données et vous 
souhaitez obtenir rapidement des 
résultats.

Fonctionne bien sur de 
grandes quantités de 
données et de 
fonctionnalités

Résultats moins 
interprétables
Ne sont pas très 
utilisés (et donc peu de 
ressources en ligne)

RANSACRegressor linear Un modèle linéaire conçu pour traiter 
les valeurs aberrantes dans les données 
et/ou les données corrompues. Ajuste 
de manière itérative un modèle linéaire 
à un sous-ensemble de données. Si le 
modèle s'adapte mieux aux données en 
ligne que le modèle précédent, il est 
enregistré comme le meilleur modèle. 
Cette opération est effectuée pendant 
un nombre spécifié d'itérations ou 
jusqu'à ce qu'un critère d'arrêt soit 
rempli.

Oui Valeurs aberrantes dans les 
étiquettes de l'ensemble de 
données

Vous avez des valeurs aberrantes 
dans les étiquettes de votre 
ensemble de données.

Il s'adapte mieux aux 
valeurs aberrantes de 
grande taille dans la 
direction Y que les autres 
algorithmes de calcul des 
valeurs aberrantes.
Plus rapide que TheilSen 
et s'adapte beaucoup 
mieux à un grand nombre 
d'échantillons

S'effondre avec un 
grand nombre de 
caractéristiques 
d'entrée.
-Ignore toutes les 
données qu'il 
considère comme 
aberrantes



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre var?

adaptive 
learns 
regulariz
ation

Large 
dataset

Non 
linear 

Usage? Usage+? Avantages Désavantage

TheilSenRegressor linear Un modèle linéaire conçu pour traiter 
les valeurs aberrantes dans les données 
et/ou les données corrompues. Calcule 
les solutions des moindres carrés sur un 
certain nombre de sous-échantillons de 
données, puis détermine la médiane L1 
de ces calculs pour choisir le meilleur 
modèle.

Oui Valeurs aberrantes dans les 
caractéristiques de 
l'ensemble de données

Il y a des valeurs aberrantes dans 
les caractéristiques de votre 
ensemble de données.

mieux gérer les valeurs 
aberrantes de taille 
moyenne dans la 
direction X

S'effondre avec un 
grand nombre de 
caractéristiques 
d'entrée.
Ignore toutes les 
données qu'il 
considère comme 
aberrantes

HuberRegressor linear Un modèle linéaire conçu pour traiter 
les valeurs aberrantes des données 
et/ou les données corrompues. Il 
n'ignore pas les valeurs aberrantes, 
mais leur accorde plutôt un poids plus 
faible.

Oui Données aberrantes et 
recherche de l'algorithme le 
plus rapide

Vous voulez des analyses rapides 
des données en ignorant les 
valeurs aberrantes.

Plus rapide que RANSAC 
et TheilSen (tant que le 
nombre d'échantillons 
n'est pas trop grand)
N'ignore pas 
complètement les points 
de données qu'il 
considère comme 
aberrants

S'effondrer avec un 
grand nombre de 
caractéristiques 
d'entrée

DecisionTreeRegressor tree Développe un arbre de décision en 
divisant sur les caractéristiques 
d'entrée. Très similaire à un arbre de 
décision typique, sauf que les nœuds de 
sortie correspondent à des sorties 
linéaires.

Oui Données non linéaires 
regroupées dans des buckets

Les données ne sont pas linéaires 
et sont plutôt composées de 
""buckets"".
Nombre d'échantillons > nombre 
de caractéristiques
Il y a des caractéristiques 
dépendantes dans les données 
d'entrée. DTR gère bien ces 
corrélations.

Peut exporter la structure 
de l'arbre pour voir sur 
quelles caractéristiques 
l'arbre se divise.
Gère bien les données 
éparses et corrélées.
Possibilité d'ajuster le 
modèle pour résoudre les 
problèmes d'overfitting

Risque d'ajustement 
excessif, surtout 
lorsque le nombre de 
caractéristiques est 
proche ou supérieur 
au nombre 
d'échantillons.

GaussianProcessRegresso
r

gaussian_process Crée un modèle en prenant une 
distribution sur un certain nombre de 
fonctions ajustées aux données. Met à 
jour le poids de ces différentes 
fonctions en utilisant la règle de Baye.

Oui Données non linéaires, pas 
sûr de la structure des 
données

Lorsque les données sont non 
linéaires ou que vous n'êtes pas 
sûr de la structure des données et 
que vous voulez un modèle qui 
s'adapte bien aux données 
d'entrée.
Ne sont pas concernés par 
l'overfitting"

S'adapte très bien aux 
données de structures 
diverses

Très enclin à 
l'ajustement excessif 
et plus difficile à éviter 
que 
DecisionTreeRegressor
.
-Très coûteux en 
termes de calcul



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre var?

adapti
ve 
learns 
regular
ization

Large 
dataset

Non 
linear 

Usage? Usage+? Avantages Désavantage

MLPRegressor neural_network Fonctionne comme un réseau 
neuronal avec plusieurs neurones à 
chaque couche et des fonctions 
d'activation non linéaires entre 
chaque couche. Un certain nombre de 
paramètres peuvent être réglés pour 
obtenir des résultats optimaux.

Oui Oui Données non linéaires, beaucoup 
de caractéristiques importantes

Les données se composent de 
plusieurs caractéristiques et de 
modèles linéaires de lutte
Toutes ou la plupart des 
caractéristiques d'entrée sont 
importantes pour faire des 
prédictions".

Peut apprendre des 
modèles en temps réel
Les réseaux neuronaux 
peuvent obtenir des 
résultats impressionnants
Peuvent traiter un grand 
nombre de 
caractéristiques 
importantes

Nécessité de mettre 
les données à l'échelle
-Difficile d'interpréter 
les résultats
Beaucoup de 
paramètres à régler

KNeighborsRegressor neighbors Crée un modèle basé sur les k plus 
proches voisins à un point donné. Où k 
est un argument d'entrée.

Oui Données non linéaires, 
l'interprétabilité est importante, 
caractéristiques non importantes

Lorsque vous n'êtes pas sûr de la 
structure de vos données et que 
vous souhaitez un modèle qui 
s'ajuste bien.
Non concerné par l'overfitting
L'interprétabilité est importante

S'adapte très bien aux 
données de structures 
variées
Plus facile à interpréter 
que les autres modèles 
non linéaires

Extrêmement impacté 
par les valeurs 
aberrantes et les 
données corrompues
Il faut beaucoup plus 
d'échantillons que de 
caractéristiques pour 
obtenir des résultats 
de qualité.
Difficulté à traiter un 
grand nombre de 
caractéristiques

RadiusNeighborsRegressor neighbors Crée un modèle basé sur tous les plus 
proches voisins dans un rayon r donné 
pour un point donné. Où r est un 
argument d'entrée.

Oui Données non linéaires, 
l'interprétabilité est importante

Lorsque vous n'êtes pas sûr de la 
structure de vos données et que 
vous souhaitez un modèle qui 
s'ajuste bien
Non concerné par l'overfitting
L'interprétabilité est importante

S'adapte très bien aux 
données de structures 
variées
Plus facile à interpréter 
que les autres modèles 
non linéaires

Extrêmement impacté 
par les valeurs 
aberrantes et les 
données corrompues
Il faut beaucoup plus 
d'échantillons que de 
caractéristiques pour 
obtenir des résultats 
de qualité.
Difficulté à traiter un 
grand nombre de 
caractéristiques



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre var?

adaptive 
learns 
regularization

Large 
dataset

Non linear Usage? Usage+? Avantages Désavantage

SVR svm Une implémentation de l'algorithme de la 
machine à vecteurs de support pour 
effectuer une régression. Le type de noyau 
peut être changé entre 'linéaire', 'poly', 
'rbf', 'sigmoïde', ou une version 
personnalisée pour changer la façon dont 
le modèle apprend.

Oui Oui Données non linéaires, grand 
nombre de caractéristiques 
sans importance

Lorsque vous avez un jeu de données 
avec un grand nombre d'éléments
Vous voulez que le modèle apprenne 
à partir d'un sous-ensemble de 
données qu'il juge le plus important.
Vous n'êtes pas concerné par 
l'interprétabilité.

Efficace avec de nombreuses 
fonctionnalités
Fournit de la flexibilité pour 
tester différents modèles 
avec des options 
d'algorithme de noyau

Très difficile 
d'interpréter les résultats
Calculs coûteux pour les 
grands ensembles de 
données.
Problèmes liés aux 
échelles variables des 
données d'entrée 
(peuvent être évités en 
mettant les données à 
l'échelle)

NuSVR svm Similaire à SVR avec les mêmes options de 
noyau. La différence réside dans la 
manière dont le modèle est implémenté. 

Oui Oui Données non linéaires, grand 
nombre de caractéristiques 
non importantes.

Lorsque vous avez un jeu de données 
avec un grand nombre d'éléments
Vous voulez que le modèle apprenne 
à partir d'un sous-ensemble de 
données qu'il juge le plus important.
Vous n'êtes pas concerné par 
l'interprétabilité.

Efficace avec de nombreuses 
fonctionnalités
Fournit de la flexibilité pour 
tester différents modèles 
avec des options 
d'algorithme de noyau

Très difficile 
d'interpréter les résultats
Calculs coûteux pour les 
grands ensembles de 
données.
Problèmes liés aux 
échelles variables des 
données d'entrée 
(peuvent être évités en 
mettant les données à 
l'échelle).
Moins utilisé en pratique 
que le SVR (donc moins 
d'aide de la part de la 
communauté)

LinearSVR svm Une implémentation de plus bas niveau du 
SVR qui ne considère que les solutions 
linéaires de la machine à vecteurs de 
support. Mais ce faisant, elle est beaucoup 
plus efficace en termes de calcul pour les 
grands ensembles de données.

Oui SVR, mais avec un très grand 
nombre d'échantillons et/ou 
de caractéristiques.

Vous souhaitez implémenter le SVR 
sur un très grand jeu de données 
(>100k).

Efficace avec beaucoup de 
caractéristiques
S'adapte mieux aux grands 
ensembles de données que 
SVR et NuSVR

Difficile d'interpréter les 
résultats
Problèmes liés aux 
échelles variables des 
données d'entrée 
(peuvent être évités par 
la mise à l'échelle des 
données)



5. Modèles - sklearn
Modèle Package Description Overfit? Gère 

outliers?
Gère gd 
nbre var?

adaptive 
learns 
regularizatio
n

Large 
dataset

Non linear Usage? Usage+? Avantages Désavantage

KernalRidge kernel_ridge Une implémentation kernalisée de 
Ridge. Les performances sont très 
similaires à celles du SVR, mais les 
résultats sont moins épars.

Oui Une autre déviation du SVR Vous voulez tester un algorithme 
en plus du SVR qui optimise une 
fonction de perte différente ?

Efficace avec de 
nombreuses 
fonctionnalités

Utilisé moins que le 
SVR dans la pratique
Très difficile 
d'interpréter les 
résultats
Problèmes liés aux 
échelles variables des 
données d'entrée 
(peuvent être évités 
en mettant les 
données à l'échelle)

IsotonicRegression isotonic Ajuste une ligne par morceaux aux 
données qui n'est pas décroissante. 
Utilise la fonction d'erreur 
quadratique moyenne pour ajuster la 
ligne.

Oui Le jeu de données 
présente des sauts 
importants dans les valeurs 
d'étiquettes.

Il existe de grands écarts entre 
les valeurs d'un ensemble de 
données qu'il serait difficile 
d'ajuster à une ligne continue.

Souvent utilisé pour 
approximer les résultats 
prédits par d'autres 
modèles moins 
interprétables.
Peut gérer une grande 
variance dans les points 
de données
Résultats interprétables

Utilisé peu dans la 
pratique et peu utile 
pour l'application
est limité à 
l'augmentation (ne 
peut pas traiter des 
données qui ne sont 
pas en augmentation)

Source : https://towardsdatascience.com/choosing-a-scikit-learn-linear-regression-algorithm-dd96b48105f5
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5. Modèles – Régression linéaire
La régression linéaire est un modèle linéaire qui suppose une relation linéaire entre les variables d'entrée (variables 
indépendantes "x") et la variable de sortie (variable dépendante "y"), de sorte que "y" peut être calculé à partir d'une 
combinaison linéaire des variables d'entrée (x).
Pour une variable à entrée unique, la méthode est appelée régression linéaire simple, tandis que pour des variables à 
entrées multiples, elle est appelée régression linéaire multiple.

Les coefficients sont trouvés en maximisant la vraisemblance (la 
probabilité d'observer nos n observations étant donné β, si erreurs 
normalement distribuée et centrées en 0 et les variables iid (indépendantes 
et identiquement distribuées) et non corrélées)  minimiser la somme des 
carrés des erreurs
Avantage :
• Interprétable. Pas de paramètres à régler.
• SI plus de features que de données de tests. Gros jeux de données ou grandes 

dimensions (features).

Inconvénient :
• Si les variables sont CORRELEES : coefficient très variant et solution non unique, 

dur à interpréter  et problème de sur apprentissage  régulariser.
• Sujets sur-apprentissage (pas régularisation). 
• Ne peut pas contrôler la complexité du modèle (pas de param).



5. Modèles – Régularisation
Régularisation : Pour limiter le sur-apprentissage, on peut utiliser une technique, la régularisation, qui consiste 
à contrôler simultanément l'erreur du modèle sur le jeu d'entraînement et la complexité du modèle.
minimiser une fonction objective qui est la somme d'un terme d'erreur et d'un terme mesurant la complexité du 
modèle. 

Le régularisateur, qui mesure la complexité du modèle, est une fonction des poids β du modèle.
λ = hyperparamètre, le coefficient de régularisation, qui contrôle l'importance relative du terme d'erreur et du 

terme de régularisation.

• Plus λ est grand, plus le terme de régularisation est important. 
• Plus il est petit, est plus l'erreur est importante 
• s'il est suffisamment faible (et en particulier s'il est égal à zéro), on retrouvera la solution de la régression linéaire 

non-régularisée. 

Quelle valeur donner à cet hyperparamètre ? En général, c'est une question que l'on réglera en utilisant 
une validation croisée .



5. Modèles – Ridge
Régularisation de Tykhonov : La régularisation de Tykhonov est un cas particulier de régularisation, dans lequel 
on utilise pour régulariser la régression linéaire le carré de la norme euclidienne l2 du vecteur de poids β.

Il faut optimiser :                                                       ou minimiser la somme des carrés des erreurs

Le modèle linéaire que l'on apprend en résolvant cette équation est appelé régression ridge. 
Elle réduit les poids des coefficients de pondération (les plus petits possibles) associés à chacune des variables.

Comment la solution de la régression ridge évolue-t-elle en fonction du coefficient de régularisation λ ? 
• Si λ est très grand, alors la régularisation prend le dessus, le terme d'erreur n'importe plus et la solution 

est β=0, on pénalise la compexité du modèle et plus on a des β petits.. 
• À l'inverse, si λ est très faible, le terme de régularisation n'est plus utilisé, 
• et on retrouve la solution de la régression linéaire non régularisée.

Erreur Complexité

Paramètre : alpha à régler
Avantage :
 La régression ridge admet toujours une solution analytique unique.
 La régression ridge permet d'éviter le surapprentissage en restreignant l'amplitude des poids.
 La régression ridge a un effet de sélection groupée : les variables corrélées ont le même coefficient.
Inconvénient : 
• Standardiser les variables



5. Modèles – Lasso

Lasso (Least Absolute Shrinkage and Selection Operator): modèle parcimonieux de sélection de variables et 
de réduction de dimension supervisée : les variables qui ne sont pas nécessaires à la prédiction de l'étiquette 
sont éliminées  annuler certains coefficients. 
Les variables qui auront un coefficient égal à zéro ne feront plus partie du modèle, qui en sera simplifié d'autant. 

Régularisation = norme ℓ1 :

Il faut optimiser :                                                         mais pas de solution explicite donc algorithme de gradient 
pour le résoudre.

Paramètre : alpha à régler, contrôle l’impact sur la valeur des coefficients.
Basse : moins complexe et bon résultat, très basse : surapprentissage.
Avantage :
 Parcimonieux : sélection de variables et de réduction de dimension 

supervisée : les variables qui ne sont pas nécessaires à la prédiction de 
l'étiquette sont éliminées.

Inconvénient : 
• Instable : Si plusieurs variables corrélées contribuent à la prédiction de 

l'étiquette, le lasso va avoir tendance à choisir une seule d'entre elles (affectant 
un poids de 0 aux autres), plutôt que de répartir les poids équitablement 
comme la régression ridge, mais aléatoire  instable



5. Modèles – Elastic Net

Elastic net, qui combine les deux termes de régularisation en un (norme ℓ2 nous permet d'éviter le sur-
apprentissage avec une solution unique, et l'utilisation de la norme ℓ1 d'avoir un modèle parcimonieux mais 
instable). 

L’Elastic net combine les normes ℓ1 et ℓ2 pour obtenir une solution moins parcimonieuse que le lasso, mais 
plus stable et dans laquelle toutes les variables corrélées pertinentes pour la prédiction de l'étiquette sont 
sélectionnées et reçoivent un poids identique.

Si alpha = 0  LASSO
Si alpha = 1  RIDGE

Avantage :
• Stabilité : plus stable et dans laquelle toutes les variables corrélées 

pertinentes pour la prédiction de l'étiquette sont sélectionnées et 
reçoivent un poids identique.

Inconvénient :
• 2 hyperparamètres, alpha et lambda ce qui demande plus de 
Ressources computationnelles.
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5. Modèles – Arbres de décision
Un DecisionTree est un algorithme d'apprentissage automatique supervisé. 

Ce système non paramétrique, contrairement aux modèles de régression linéaire (qui supposent la linéarité), ne fait 
aucune hypothèse sous-jacente sur la distribution des erreurs ou des données. 

Il s'agit d'une structure de type organigramme, composée de plusieurs questions (nœud) et qui, en fonction des 
réponses (branche) données, conduira à une étiquette de classe ou à une valeur (feuille) lorsqu'elle sera appliquée à 
une observation quelconque.

Les arbres de décision permettent de classer des objets en effectuant des décisions successives sur la base de leurs 
variables.

L'algorithme de base pour la construction d'arbres de décision utilise une recherche descendante top-down, greedy
search dans l'espace des branches possibles, sans retour en arrière. 

Les noeuds de l’arbre représentent ces décisions alors que les feuilles représentent les valeurs de la variable cible (à 
prédire).

Plusieurs algorithmes existent permettant de générer des arbres de décision (ID3, C4.5, CART, etc.). Chaque 
algorithme utilise un critère pour choisir la variable à utiliser sur un noeud (gain d’information, entropie, écart-type, 
MSE (régression) etc.)



5. Modèles – Arbres de décision

Algorithme :
Conformément à l'analogie avec les arbres, les arbres de décision mettent en œuvre un processus de décision 
séquentiel. 
En partant du nœud racine, une caractéristique est évaluée et l'un des deux nœuds (branches) est sélectionné. 
Chaque nœud de l'arbre est fondamentalement une règle de décision. 
Cette procédure est répétée jusqu'à ce qu'une feuille finale soit atteinte, qui représente normalement la cible. 
Les arbres de décision sont également des modèles intéressants si l'on se soucie de l'interprétabilité.
Avantage :
• Interprétables. Pas besoin de norma/standardisation.
• Représentation graphique. Feature importances (importance dans la décison).
• Les arbres peuvent facilement traiter des prédicteurs qualitatifs sans avoir à 

créer des variables fictives.
• Régression : pas d’extrapolation possible (prédiction en dehors jeux de train)
Inconvénient :
• les arbres n'ont généralement pas le même niveau de précision prédictive que 

certaines des autres approches de régression et de classification.
• Surapprentisage si profond et feuille pure (100% apprentissage) : pré élagage 

: stopper en amont la création de l’arbre (max_depth, max_leaf_nodes, 
min_samples_leaf) ou post-élagage : supprimer ou regrouper les nœuds avec 
peu d’information). Pas très bon en généralisation



5. Modèles – Arbres de décision

Hyparamètres :

min_samples_split (nombre minimum d'échantillons qu'un nœud doit avoir avant d'être divisé),

min_sample_leaf (nombre minimum d'échantillons qu'une feuille doit avoir)

min_weight_fraction_leaf (identique à min_sample_leaf mais exprimé comme une fraction du nombre total d'instances 
pondérées)

max_leaf_nodes (nombre maximum de noeuds de feuilles)

max_features (nombre maximum de caractéristiques qui sont évaluées pour le fractionnement dans chaque nœud).
L'augmentation du min ou la diminution du max régularise le modèle.



Modèles – SVM

5



5. Modèles – SVM
Les SVM machines à vecteurs de support sont le plus souvent utilisées sur des données avec beaucoup de 
variables. 
L’idée des SVMs est de chercher un hyperplan (un séparateur linéaire) qui sépare au mieux les objets de chaque 
catégorie. En effet, il peut y avoir une infinité de séparateurs possibles comme le montre la figure ci-dessous. 
Le meilleur hyperplan selon les SVMs est celui qui maximise les marges avec les objets de chaque catégorie. 
Ces objets sont d’ailleurs appelés “vecteurs de support” car ils supportent les hyper-plans parallèles.
Par contre, il est fréquent qu’il n’y ait pas d’hyperplan capable de séparer parfaitement les données. 
Dans ce cas, on peut permettre qu’il y ait un certain nombre d’erreurs. 
L’optimisation de l’hyper-paramètre C permet justement de fixer un compromis entre la maximisation des marges et 
la minimisation des erreurs. Prédiction = mesure de la distance du 
nouveau point aux vecteurs de support.

Astuce du noyau :entraîner un modèle dans un espace de grande dimension
en calculant directement la distance (produit scalaire) des points de données
pour la représentation étendue des caractéristiques sans jamais calculer 
réellement cette extension. Ex : noyau polynomial, noyau rbf radial gaussien.

Paramètres :
• Gamma :contrôle la largeur du noyau gaussien, détermine la portée de l’influence de certains échantillons (petite 

valeur : grande portée, grande : petite portée.
• C : paramètre de régularisation (limite l’importance de chaque point).



5. Modèles – SVR

L'objectif du vecteur de support est de trouver un hyperplan dans un espace à N dimensions qui peut classer les 
points de données.
Les points de données situés sur la marge et les plus proches de l'hyperplan sont appelés vecteurs de support.
Maintenant, lorsque la plupart des données se trouvent dans la meilleure marge vers chaque côté de l'hyperplan, 
alors le SVR ou la régression vectorielle de soutien peut être utilisé pour identifier et prédire les données 
dépendantes très clairement.
Sa formule mathématique pour les lignes marginales vers chaque côté de l'hyperplan est représentée par :
Yi = (w , xi) + b + déviation
Yi = (w, xi) + b- déviation

Étapes à suivre pour construire un modèle de régression de support :
1) Trouvez vos ensembles de données X et Y, indépendants et dépendants, pour entraîner le modèle.
2) Observez les données en un coup d'œil et essayez d'ajuster le paramètre de noyau le mieux adapté. Vous pouvez 
également essayer de tracer les points de données et de voir la corrélation.
Il peut être linéaire, gaussien ou polynomial, selon la complexité.
Le noyau le plus couramment utilisé est gaussien.
*Noyau polynomial : K(x,y) =(x .y +1)d, où d>0 est une constante qui définit le noyau.
Ordre.
*Noyau RBF gaussien : K(x,y) =exp(-| x-y|2/2σ2), où σ>0 est un paramètre qui
Définit la largeur du noyau. Les paramètres associés d et σ sont déterminés lors de la phase d'apprentissage.
3) Tracer des graphiques
4) Prédire pour toute valeur indépendante.



5. Modèles – SVR

Avantages :
• Puissants et efficaces sur une large variété de jeux de données (peu ou grandes dimensions des features).

Inconvénients :
• Pré-traitement des données : Standardiser avec même échelle : MinMaxScaler.
• Pas pour les grandes quantités de données (temps de consommation mémoire trop grand).
• Ajustement précis des paramètres.
• Peu interprétable.
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5. Modèles – KNeighbors

K- Nearest Neighbors est un algorithme d'apprentissage automatique supervisé car la variable cible est connue.
Non paramétrique car il ne fait pas d'hypothèse sur le modèle de distribution des données sous-jacentes.
Algorithme paresseux car KNN n'a pas d'étape de formation. 
Tous les points de données ne seront utilisés qu'au moment de la prédiction. 
Sans étape de formation, l'étape de prédiction est coûteuse. 
Utilise la similarité des caractéristiques pour prédire le groupe dans lequel le nouveau point sera classé.

Algorithme :
Étape 1 : Choisissez une valeur pour K. K doit être un 
nombre impair.
Étape 2 : Trouver la distance du nouveau point par rapport 
à chacune des données d'apprentissage.
Étape 3 : Trouvez les K voisins les plus proches du 
nouveau point de données.
Étape 4 : Pour la classification, comptez le nombre de 
points de données dans chaque catégorie parmi les k 
voisins. Le nouveau point de données appartiendra à la 
classe qui a le plus de voisins.
Pour la régression, la valeur du nouveau point de données 
sera la moyenne des k voisins.

La distance peut être calculée en utilisant
• La distance euclidienne
• La distance de Manhattan
• La distance de Hamming
• La distance de Minkowski



5. Modèles – KNeighbors
Avantages :
• Algorithme simple et donc facile à interpréter la prédiction.
• Non paramétrique, donc ne fait aucune hypothèse sur le modèle de données sous-jacentes
• Utilisé à la fois pour la classification et la régression
• L'étape de formation est beaucoup plus rapide pour les plus proches voisins que pour les autres 

algorithmes d'apprentissage automatique, mais prédictions parfois longues si bcp features/données.

Inconvénients :

• KNN est coûteux en calcul car il recherche les plus proches voisins pour le nouveau point à l'étape de 
prédiction.

• Besoin élevé en mémoire car KNN doit stocker tous les points de données (pas plus de 100 features).
• L'étape de prédiction est très coûteuse
• Sensible aux valeurs aberrantes, la précision est affectée par le bruit ou les données non pertinentes.
• Sensible aux datasets sparses (jeux de données parsemés avec beaucoup de données nulles).
• Pour les petits jeux de données.

Paramètres importants :

• K : nombre de voisins (augmenter k lisse les prédictions, mais moins bons résultats apprentissage).
• Distance : mesurée entre les points, euclidienne, manhatan
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5. Modèles – Ensemblistes
apprentissage automatique dans lequel plusieurs modèles (souvent appelés "apprenants faibles") sont formés pour 
résoudre le même problème et combinés pour obtenir de meilleurs résultats (plus précis et/ou robuste).

Attention :  combinaison des modèles apprenants faibles à faibles bias et fortes variances  réduire la variance (et vis et versa)

Méthodes parallèles :
entraîner plusieurs modèles apprenants faibles de manière 
indépendante (en parallèle) pour ensuite les regrouper afin de 
prendre une décision

Algorithme de combinaison ?

Méthodes séquentielles :
entraîner plusieurs modèles apprenants faibles de manière 
séquentielle à la suite, premier modèle induit erreurs, on donne 
plus de poids aux données induisant erreur et entraîne deuxième 
modèle, puis nouveau modèle entraîné avec le jeu de données 
pondérés en augmentant le poids des observations induisant le 
plus d’erreur… Le dernier modèle est le plus performant.

BAGGING:
Entraîne plusieurs modèles 
apprenants faibles homogènes, 
indépendamment les uns des 
autres en parallèle et les combine 
en suivant un processus 
déterministe de calcul de moyenne 
(moins de variance).

BOOSTING:
Entraîne des modèles apprenants 
faibles homogènes séquentiellement
de manière très adaptative (un modèle 
de base dépend des précédents) et 
les combine en suivant une stratégie 
déterministe (modèles forts moins 
biaisés).

STACKING:
Entraîne des modèles apprenants 
faibles hétérogènes en parallèle et 
les combine en formant un méta-
modèle pour produire une prédiction 
basée sur les prédictions des 
différents modèles faibles (modèles 
forts moins biaisés).
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5. Modèles – Ensemblistes - Bagging
BAGGING (bootstrap aggregation) :
- Basée sur bootstrap (nouveaux datasets de taille identique à l’original avec remise, représentatifs et indépendants 
et identiquement distribués),
- entraînement de plusieurs modèles apprenants faibles presque indépendants en parallèle,
- moyenne de leurs prédictions afin d'obtenir un modèle avec une variance plus faible.

Il permet de réduire la variance des estimateurs individuels et offre une prédiction plus performante et plus stable, 
dépendante du nombre d’apprenants faibles utilisés.

Avantage : parallèlisation. Algorithme : 
• Des sous-ensembles aléatoires sont créés à partir de 

l'ensemble de données original (Bootstrapping). Le sous-
ensemble de l'ensemble de données comprend toutes les 
caractéristiques.

• Un estimateur de base spécifié par l'utilisateur est ajusté 
sur chacun de ces petits ensembles.

• Les prédictions de chaque modèle sont combinées pour 
obtenir le résultat final.



5. Modèles – Ensemblistes - Bagging
Hyperparamètres :

base_estimator : Il définit l'estimateur de base à adapter sur des sous-ensembles aléatoires de l'ensemble de données.
Si rien n'est spécifié, l'estimateur de base est un arbre de décision.

n_estimators : C'est le nombre d'estimateurs de base à créer. Le nombre d'estimateurs doit être soigneusement ajusté car un grand nombre prendrait 
beaucoup de temps à exécuter, tandis qu'un très petit nombre pourrait ne pas fournir les meilleurs résultats.

max_samples : Ce paramètre contrôle la taille des sous-ensembles. Il s'agit du nombre maximum d'échantillons pour entraîner chaque estimateur de 
base.

max_features : Ce paramètre contrôle le nombre de caractéristiques à tirer de l'ensemble des données. Il définit le nombre maximum de 
caractéristiques requises pour entraîner chaque estimateur de base.

n_jobs : Le nombre de tâches à exécuter en parallèle. Définissez cette valeur comme étant égale au nombre de cœurs dans votre système. Si la 
valeur est -1, le nombre de tâches est égal au nombre de cœurs.

random_state : Indique la méthode de répartition aléatoire. Lorsque la valeur de random state est la même pour deux modèles, la sélection aléatoire 
est la même pour les deux modèles. Ce paramètre est utile lorsque vous souhaitez comparer différents modèles.
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5. Modèles – Bagging - RandomForest
RandomForest :
Méthode de bagging où les arbres profonds (low bias, high variance), ajustés sur des échantillons bootstrap de données et des 
sous-ensembles aléatoires de features, sont combinés (moyenne des prédictions pour tous les arbres pour la régression) pour 
produire une sortie avec une variance plus faible.

1. greedy, top-down recursive partitioning algorithm : faire grandir l’arbre (feature à utiliser et point de séparation pour 
minimiser l’erreur quadratique)
2. Elaguer l’arbre : réduire l’over-fitting en prenant en compte le coût de complexité du modèle.

Avantages : amélioration du bagging puisqu'elles créent des arbres plus différents structurellement en échantillonnant 
aléatoirement seulement un sous-ensemble des features disponibles, ce qui permet de réduire la corrélation entre les arbres 
et donc d'obtenir un meilleur modèle final. Gros datasets. Interprétable. Estimation de l’importance des features. Rapide. Pas 
d’over-fitting. Plus robuste aux valeurs manquantes. Hyperparamètres de base efficaces. Parallèlisable.

Désavantages : taille mémoire pour stockage gros jeux. Un nombre élevé d'arbres peut rendre le processus de calcul beaucoup 
plus lent et inefficace pour les prédictions en temps réel. Datasets éparses. Pas données textuelles (grandes dimensions).



5. Modèles – Bagging - RandomForest

Hyperparamètres :

Augmenter le pouvoir prédictif :

n_estimators : Nombre d'arbres que l'algorithme fait croître avant de faire la prédiction. Un nombre plus élevé d'arbres devrait augmenter les performances et rendre la prédiction plus stable, avec l'inconvénient de ralentir le calcul 
(élevée mieux)

max_features : correspond au maximum de caractéristiques que Random Forest est autorisé à essayer dans un arbre individuel, lors de la recherche de la meilleure division ; (=sqrt(n_feature) classification, n_features : régression)

min_sample_leaf : nombre minimum requis de feuilles pour effectuer la division sur un noeud interne.

max_depth : La forêt aléatoire comporte plusieurs arbres de décision. Ce paramètre définit la profondeur maximale des arbres.

criterion: Il définit la fonction qui doit être utilisée pour le fractionnement. La fonction mesure la qualité d'un fractionnement pour chaque caractéristique et choisit le meilleur fractionnement.

min_samples_leaf : Ceci définit le nombre minimum d'échantillons requis pour être à un nœud feuille. Une taille de feuille plus petite rend le modèle plus enclin à capturer le bruit dans les données de train.

max_leaf_nodes : Ce paramètre spécifie le nombre maximal de nœuds de feuille pour chaque arbre. L'arbre cesse de se diviser lorsque le nombre de nœuds de feuilles devient égal au nombre maximal de nœuds de feuilles (peu 
aider à meilleur résultat.

Augmentation de la vitesse de traitement :

n_jobs : indique au système le nombre de processeurs qu'il est autorisé à utiliser. La valeur '-1' signifie qu'il n'y a pas de limite ;

random_state : rend la sortie du modèle reproductible. Il produira toujours les mêmes résultats si vous lui donnez une valeur fixe ainsi que les mêmes paramètres et données d'entraînement.

oob_score : méthode de validation croisée de Random Forest. On appelle cela les échantillons hors-sac. Elle est très similaire à la méthode de validation croisée leave-one-out mais sans charge de calcul.

Algorithme :
• Des sous-ensembles aléatoires sont créés à partir de l'ensemble de 

données original (bootstrapping).
• À chaque nœud de l'arbre de décision, seul un ensemble aléatoire de 

caractéristiques est pris en compte pour décider de la meilleure 
répartition (algo de calcul la combinaison caractéristique/séparation 
localement optimale).

• Un modèle d'arbre de décision est ajusté sur chacun des sous-
ensembles.

• La prédiction finale est calculée en faisant la moyenne des prédictions 
de tous les arbres de décision.
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5. Modèles – Bagging - ExtraTrees
L'algorithme Extremely Randomized Trees, ou Extra Trees en abrégé, est un algorithme d'apprentissage 
automatique d'ensemble d'arbres de décision, lié à d'autres ensembles d'algorithmes d'arbres de décision tels que 
l'agrégation bootstrap (bagging) et la forêt aléatoire.
L'algorithme Extra Trees fonctionne en créant un grand nombre d'arbres de décision non élagués à partir de 

l'ensemble de données d'apprentissage (pas bootstrap, échantillonne sans remplacement, réduit biais). 
Les prédictions sont faites en faisant la moyenne des prédictions des arbres de décision dans le cas de la régression.

L'algorithme Extra-Trees construit un ensemble d'arbres de décision ou de régression non élagués selon la procédure 
descendante classique. Ses deux principales différences avec les autres méthodes d'ensemble basées sur les arbres 
sont qu'il divise les nœuds en choisissant les caractéristiques des points de coupe de manière totalement aléatoire 
(pas un algorithme gourmand pour sélectionner un point de division optimal, réduit la variance) et qu'il utilise 
l'échantillon d'apprentissage entier (plutôt qu'une réplique bootstrap) pour faire croître les arbres.

Inconvénients :
• sélection aléatoire  jamais le même résultat lorsque l’algorithme est exécuté.
• Évaluation : faire une validation croisée, ajustement : augmenter les arbres jusqu’à variance stabilisée

Avantages :
• sélection aléatoire des points de fractionnement rend les arbres de décision de l'ensemble moins corrélés 

(mais augmente la variance donc augmenter le nombre d’arbres).
• Coût de calcul plus faible que RF  plus rapide.



5. Modèles – Bagging - ExtraTrees
Hyperparamètres : 

n_estimators : le nombre d'arbres de décision dans l'ensemble.

max_features : le nombre de caractéristiques d'entrée à sélectionner aléatoirement et à prendre en compte pour chaque point de séparation. Les bonnes valeurs empiriques par défaut 
sont max_features=None (toujours considérer toutes les caractéristiques au lieu d'un sous-ensemble aléatoire) pour les problèmes de régression, et max_features="sqrt" (utiliser un 
sous-ensemble aléatoire de taille sqrt(n_features)) pour les tâches de classification (où n_features est le nombre de caractéristiques dans les données).

min_samples_split :le nombre minimum d'échantillons requis dans un nœud pour créer un nouveau point de séparation.

min_samples_leaf : Le nombre minimum d'échantillons requis pour être à un noeud feuille. Un point de séparation à n'importe quelle profondeur ne sera considéré que s'il laisse au 
moins min_samples_leaf échantillons d'entraînement dans chacune des branches gauche et droite. Cela peut avoir pour effet de lisser le modèle, en particulier dans la régression.

max_depth : profondeur , de bons résultats sont souvent obtenus en définissant max_depth=None (tout déployé)

bootstrap : un paramètre optionnel qui permet aux utilisateurs d'utiliser des répliques bootstrap, mais par défaut, il utilise l'échantillon d'entrée entier. Cela peut augmenter la variance 
car le bootstrap la rend plus diversifiée.

n_jobs : construction parallèle des arbres et calcul parallèle des prédictions 

min_impurity_decrease : Un nœud sera divisé si cette division induit une diminution de l'impureté supérieure ou égale à cette valeur.

random_state : valeur aléatoire

warm_start : Lorsqu'elle est définie sur True, la solution de l'appel précédent à l'ajustement est réutilisée et d'autres estimateurs sont ajoutés à l'ensemble, sinon, une nouvelle forêt est 
ajustée.

Verbose : Contrôle la verbosité lors de l'ajustement et de la prédiction. 

Criterion : fonction permettant de mesurer la qualité d'un fractionnement. Les critères pris en charge sont "mse" pour l'erreur quadratique moyenne, qui est égale à la réduction de la 
variance comme critère de sélection des caractéristiques, et "mae" pour l'erreur absolue moyenne.
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5. Modèles – Ensemblistes - Boosting
BOOSTING :
Entraînement de modèles apprenants faibles (peu profonds high bias, low variance) qui sont agrégés séquentiellement pour 
obtenir un apprenant fort plus performant.
Chaque modèle de la séquence est ajusté en donnant plus d'importance aux observations du jeu de données qui ont été mal 
traitées par les modèles précédents de la séquence.
Le modèle final est un apprenant fort avec un biais plus faible (et parfois aussi réduction de la variance).

Réglage : 
- informations prises pour ajuster séquentiellement?
- comment agréger le modèle courant aux précédents ?

Inconvénient : pas de parallélisation, ajustement séquentiel coûteux
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5. Modèles – Boosting - AdaBoost

AdaBoost :
Le boosting adaptatif met à jour les poids attachés à chacune des observations de l'ensemble de données 
d'apprentissage.
Le modèle d'ensemble est défini comme une somme pondérée de L apprenants faibles  (stumps c’est à dire des arbres 
qui ne font qu’une seule séparation, avec un seul noeud ) construits séquentiellement et une agrégation en une simple 
combinaison linéaire pondérée par des coefficients exprimant la performance de chaque apprenant.
Optimisation globale difficile  optimisation itérative locale en ajoutant les apprenants faibles un par un, en 
recherchant à chaque itération la meilleure paire possible (coefficient, apprenant faible) à ajouter au modèle 
d'ensemble actuel

L itération :
 ajuster le meilleur modèle faible possible avec les poids des observations courantes
 calculer la valeur du coefficient de mise à jour qui est une sorte de métrique d'évaluation 

scalaire de l'apprenant faible qui indique dans quelle mesure cet apprenant faible doit 
être pris en compte dans le modèle d'ensemble

 mettre à jour l'apprenant fort en ajoutant le nouvel apprenant faible multiplié par son 
coefficient de mise à jour

 calculer les nouveaux poids des observations qui expriment les observations sur 
lesquelles nous souhaitons nous concentrer à la prochaine itération (les poids des 
observations mal prédites par le modèle agrégé augmentent et les poids des 
observations correctement prédites diminuent).



5. Modèles – Boosting - AdaBoost
Algorithme :
• Au départ, toutes les observations ont le même poids.
• Un modèle est construit sur un sous-ensemble de données.
• En utilisant ce modèle, des prédictions sont faites sur l'ensemble des données.
• Les erreurs sont calculées en comparant les prédictions et les valeurs réelles.
• Lors de la création du modèle suivant, des poids plus élevés sont attribués aux points de données qui ont été prédits de manière incorrecte.
• Les pondérations peuvent être déterminées en utilisant la valeur de l'erreur. Par exemple, plus l'erreur est élevée, plus le poids attribué à 

l'observation est important.
Ce processus est répété jusqu'à ce que la fonction d'erreur ne change pas, ou que la limite maximale du nombre d'estimateurs soit atteinte.

Hyperparamètres :

base_estimators : spécifie le type d'estimateur de base, c'est-à-dire l'algorithme à utiliser comme apprenant de base.

n_estimators : Il définit le nombre d'estimateurs de base, la valeur par défaut est 10 mais vous pouvez l'augmenter afin d'obtenir une meilleure performance.

learning_rate : même impact que dans l'algorithme de descente de gradient. Ce paramètre contrôle la contribution des estimateurs dans la combinaison finale. Il existe un 
compromis entre le taux d'apprentissage et les n_estimateurs.

max_depth : profondeur maximale de l'estimateur individuel. Réglez ce paramètre pour obtenir les meilleures performances.

n_jobs : indique au système le nombre de processeurs qu'il est autorisé à utiliser. La valeur '-1' signifie qu'il n'y a pas de limite 

random_state : rend la sortie du modèle reproductible. Il produira toujours les mêmes résultats si vous lui donnez une valeur fixe ainsi que les mêmes paramètres et 
données d'entraînement.
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5. Modèles – Boosting – Gradient Boosting
Gradient Boosting :
boosting gradient met à jour la valeur de ces observations.
Le modèle d'ensemble que nous essayons de construire est également une somme pondérée d'apprenants faibles.
L’optimisation globale est difficile  optimisation séquentielle, le boosting de gradient transforme le problème en une 
descente de gradient : à chaque itération, nous ajustons un apprenant faible à l'opposé du gradient de l'erreur 
d'ajustement actuelle par rapport au modèle d'ensemble actuel. 

L itérations :
 ajuster le meilleur apprenant faible possible aux pseudo-résidus (approximer 

l'opposé du gradient par rapport à l'apprenant fort actuel)
 calculer la valeur de la taille de pas optimale qui définit de combien nous mettons 

à jour le modèle d'ensemble dans la direction du nouvel apprenant faible
 mettre à jour le modèle d'ensemble en ajoutant le nouvel apprenant faible multiplié 

par la taille du pas (faire un pas de descente de gradient)
 calculer de nouveaux pseudo-résidus qui indiquent, pour chaque observation, 

dans quelle direction nous souhaitons mettre à jour les prédictions du modèle 
d'ensemble.



5. Modèles – Boosting – Gradient Boosting
Algorithme :

 Un modèle est construit sur un sous-ensemble de données.
 En utilisant ce modèle, des prédictions sont faites sur l'ensemble des données.
 Les erreurs sont calculées en comparant la moyenne des prédictions et les valeurs réelles.
 Un nouveau modèle est créé en utilisant les erreurs calculées comme variable cible. Notre objectif est de trouver la meilleure répartition pour 

minimiser l'erreur.
 Les prédictions faites par ce nouveau modèle sont combinées avec les prédictions du modèle précédent.
 De nouvelles erreurs sont calculées en utilisant cette valeur prédite et la valeur réelle.

Ce processus est répété jusqu'à ce que la fonction d'erreur ne change pas, ou que la limite maximale du nombre d'estimateurs soit atteinte.
Hyperparamètres spécifiques à l'arbre : Ils affectent chaque arbre individuel du modèle.

min_samples_split : Définit le nombre minimum d'échantillons (ou d'observations) requis dans un nœud pour être pris en compte pour le fractionnement.
Utilisé pour contrôler le surajustement. Des valeurs plus élevées empêchent un modèle d'apprendre des relations qui pourraient être très spécifiques à l'échantillon particulier sélectionné pour un arbre.
Des valeurs trop élevées peuvent conduire à un sous-ajustement et doivent donc être réglées à l'aide de CV.

min_samples_leaf : Définit les échantillons (ou observations) minimums requis dans un nœud terminal ou une feuille.
Utilisé pour contrôler l'excès d'ajustement de manière similaire à min_samples_split.
En général, des valeurs plus faibles doivent être choisies pour les problèmes de classes déséquilibrées car les régions dans lesquelles la classe minoritaire sera majoritaire seront très petites.

min_weight_fraction_leaf : Similaire à min_samples_leaf mais défini comme une fraction du nombre total d'observations au lieu d'un nombre entier.
Une seule des options #2 et #3 doit être définie.

max_depth : La profondeur maximale d'un arbre. Utilisé pour contrôler l'excès d'ajustement car une profondeur plus élevée permettra au modèle d'apprendre des relations très spécifiques à un échantillon 
particulier.
Doit être réglé à l'aide de CV.

max_leaf_nodes : Le nombre maximum de nœuds terminaux ou de feuilles dans un arbre.
Peut être défini à la place de max_depth. Comme les arbres binaires sont créés, une profondeur de 'n' produirait un maximum de 2^n feuilles.
Si cette valeur est définie, GBM ignorera max_depth.

max_features : Le nombre de caractéristiques à prendre en compte lors de la recherche de la meilleure répartition. Elles seront sélectionnées aléatoirement.
En règle générale, la racine carrée du nombre total de caractéristiques fonctionne bien mais nous devrions vérifier jusqu'à 30-40% du nombre total de caractéristiques.
Des valeurs plus élevées peuvent conduire à un ajustement excessif, mais cela dépend de chaque cas.



5. Modèles – Boosting – Gradient Boosting
Paramètres de boosting : Ils affectent l'opération de boosting dans le modèle.

learning_rate : cela détermine l'impact de chaque arbre sur le résultat final (étape 2.4). Le GBM fonctionne en commençant par une estimation initiale qui est mise à jour en utilisant la sortie de chaque arbre. Le paramètre d'apprentissage contrôle l'ampleur 
de ce changement dans les estimations. Contrôle le dégré ‘intensité avec lequel chaque arbre essaie de corriger les erreurs de l’arbre précédent. Valeurs élevées  modèle plus complexe.
Des valeurs faibles sont généralement préférées car elles rendent le modèle robuste aux caractéristiques spécifiques de l'arbre et lui permettent ainsi de bien se généraliser.
Des valeurs plus faibles nécessiteraient un plus grand nombre d'arbres pour modéliser toutes les relations et seraient coûteuses en termes de calcul.

n_estimators :  Le nombre d'arbres séquentiels à modéliser (étape 2). Valeur élevée  modèle plus complexe.
Bien que le GBM soit assez robuste pour un nombre élevé d'arbres, il peut toujours être surajusté à un moment donné. Par conséquent, ce nombre doit être ajusté en utilisant CV pour un taux d'apprentissage particulier.

subsample : La fraction d'observations à sélectionner pour chaque arbre. La sélection se fait par échantillonnage aléatoire.
Des valeurs légèrement inférieures à 1 rendent le modèle robuste en réduisant la variance.
Les valeurs typiques ~0.8 fonctionnent généralement bien mais peuvent être affinées davantage.

Paramètres divers : Autres paramètres pour le fonctionnement global

loss : Il s'agit de la fonction de perte à minimiser dans chaque fractionnement. Elle peut avoir différentes valeurs pour la classification et la régression. En général, les valeurs par défaut fonctionnent bien. D'autres valeurs ne devraient être choisies que si vous 
comprenez leur impact sur le modèle.

init : Ceci affecte l'initialisation de la sortie. Ceci peut être utilisé si nous avons créé un autre modèle dont le résultat doit être utilisé comme estimations initiales pour GBM.

random_state : La graine de nombre aléatoire afin que les mêmes nombres aléatoires soient générés à chaque fois.
Ceci est important pour le réglage des paramètres. Si nous ne fixons pas le nombre aléatoire, nous aurons des résultats différents pour les exécutions suivantes sur les mêmes paramètres et il devient difficile de comparer les modèles.
Cela peut potentiellement entraîner un surajustement à un échantillon aléatoire particulier sélectionné. Nous pouvons essayer d'exécuter des modèles pour différents échantillons aléatoires, ce qui est coûteux en termes de calcul et n'est généralement pas 
utilisé.

verbose : Le type de sortie à imprimer lorsque le modèle s'ajuste. Les différentes valeurs peuvent être :
0 : aucune sortie générée (par défaut)
1 : sortie générée pour les arbres dans certains intervalles
>1 : sortie générée pour tous les arbres

warm_start : Ce paramètre a une application intéressante et peut être d'une grande aide s'il est utilisé judicieusement.
Il permet d'ajuster des arbres supplémentaires sur les ajustements précédents d'un modèle. Cela peut faire gagner beaucoup de temps et vous devriez explorer cette option pour les applications avancées.

presort : Sélectionnez si vous voulez présélectionner les données pour des fractionnements plus rapides.
La sélection est automatique par défaut, mais elle peut être modifiée si nécessaire.
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5. Modèles – Boosting – XGBoost

Extreme Gradient Boosting (2014) est une implémentation avancée du Gradient Boosting.  

XGBoost est un algorithme d'arbre de décision boosté par le gradient. Il existe depuis 2014 et a fini par dominer 
Kaggle et la communauté des sciences des données. XGB a introduit le boosting par gradient, où de nouveaux 
modèles sont adaptés aux résidus des modèles précédents, puis ajoutés ensemble, en utilisant un algorithme de 
descente de gradient pour minimiser la perte.

Paramètres généraux : Ils définissent la fonctionnalité globale de 
XGBoost.

booster [default=gbtree] Sélectionnez le type de modèle à exécuter à 
chaque itération. Il y a 2 options : gbtree : modèles basés sur des arbres
gblinear : modèles linéaires 

silent [default=0] : Le mode silencieux est activé est fixé à 1, c'est-à-dire 
qu'aucun message d'exécution ne sera imprimé. Il est généralement bon 
de garder la valeur 0 car les messages peuvent aider à comprendre le 
modèle.

nthread [par défaut, le nombre maximum de threads disponibles si non 
défini]. Ceci est utilisé pour le traitement parallèle et le nombre de cœurs 
dans le système doit être entré.Si vous souhaitez exécuter sur tous les 
cœurs, la valeur ne doit pas être saisie et l'algorithme le détectera 
automatiquement.

Paramètres de la tâche d'apprentissage : ces paramètres sont utilisés 
pour définir l'objectif d'optimisation et la métrique à calculer à chaque étape.

objectif [default=reg:linear] : Ceci définit la fonction de perte à minimiser. Les 
valeurs les plus utilisées sont :
binary:logistic -régression logistique pour la classification binaire, renvoie la 
probabilité prédite (et non la classe).
multi:softmax -classification multiclasse utilisant l'objectif softmax, renvoie la 
classe prédite (pas les probabilités)
Vous devez également définir un paramètre supplémentaire num_class
(nombre de classes) définissant le nombre de classes uniques.



5. Modèles – Boosting – XGBoost
Paramètres du Booster :

eta [default=0.3] / Analogue au taux d'apprentissage dans GBM Rend le modèle plus robuste en réduisant les poids à chaque étape. Valeurs finales typiques à utiliser : 0.01-0.2

min_child_weight [default=1]/ Définit la somme minimale des poids de toutes les observations requises dans un enfant.
Ceci est similaire à min_child_leaf dans GBM mais pas exactement. Cela fait référence à la "somme des poids" minimale des observations alors que GBM a un "nombre d'observations" minimal.
Utilisé pour contrôler l'over-fitting. Des valeurs plus élevées empêchent un modèle d'apprendre des relations qui pourraient être très spécifiques à l'échantillon particulier sélectionné pour un arbre.
Des valeurs trop élevées peuvent conduire à un sous-ajustement et doivent donc être réglées à l'aide de CV.

max_depth [default=6]/ La profondeur maximale d'un arbre, comme GBM. Utilisé pour contrôler l'excès d'ajustement car une profondeur plus élevée permettra au modèle d'apprendre des relations très spécifiques à un échantillon 
particulier.
Doit être réglé à l'aide de CV. Valeurs typiques : 3-10

max_leaf_nodes : Le nombre maximum de nœuds terminaux ou de feuilles dans un arbre. Peut être défini à la place de max_depth. Comme les arbres binaires sont créés, une profondeur de 'n' produirait un maximum de 2^n feuilles.
Si cette valeur est définie, GBM ignorera max_depth. 

gamma [default=0] : Un nœud est divisé uniquement lorsque la division qui en résulte donne une réduction positive de la fonction de perte. Gamma spécifie la réduction minimale des pertes requise pour effectuer un fractionnement.
Rend l'algorithme conservateur. Les valeurs peuvent varier en fonction de la fonction de perte et doivent être ajustées.

max_delta_step [default=0] : Le pas delta maximum que nous autorisons pour l'estimation du poids de chaque arbre. Si la valeur est fixée à 0, cela signifie qu'il n'y a pas de contrainte. S'il est défini à une valeur positive, cela peut 
aider à rendre l'étape de mise à jour plus conservatrice.
Habituellement, ce paramètre n'est pas nécessaire, mais il peut être utile dans la régression logistique lorsque la classe est extrêmement déséquilibrée.
Il n'est généralement pas utilisé mais vous pouvez l'explorer davantage si vous le souhaitez.

subsample [default=1] : Identique au sous-échantillon de GBM. Dénote la fraction d'observations à échantillonner de manière aléatoire pour chaque arbre.
Des valeurs faibles rendent l'algorithme plus conservateur et empêchent l'ajustement excessif, mais des valeurs trop faibles peuvent conduire à un ajustement insuffisant.
Valeurs typiques : 0.5-1

colsample_bytree [default=1] (en anglais) : Similaire à max_features dans GBM. Indique la fraction de colonnes à échantillonner de manière aléatoire pour chaque arbre.
Valeurs typiques : 0.5-1

colsample_bylevel [default=1] : Indique le rapport de sous-échantillonnage des colonnes pour chaque division, dans chaque niveau.
Je ne l'utilise pas souvent car subsample et colsample_bytree feront le travail pour vous. Mais vous pouvez explorer davantage si vous le souhaitez.

lambda [default=1] : Terme de régularisation L2 sur les poids (analogue à la régression Ridge)
Ceci est utilisé pour gérer la partie régularisation de XGBoost. Bien que de nombreux data scientists ne l'utilisent pas souvent, il devrait être exploré pour réduire l'overfitting.

alpha [default=0] : Terme de régularisation L1 sur le poids (analogue à la régression Lasso)
Peut être utilisé en cas de dimensionnalité très élevée afin que l'algorithme s'exécute plus rapidement lorsqu'il est mis en œuvre.

scale_pos_weight [par défaut=1] : Une valeur supérieure à 0 devrait être utilisée en cas de fort déséquilibre des classes, car elle permet une convergence plus rapide.



5. Modèles – Boosting – XGBoost
Avantages (%GBM) :

• Régularisation : L'implémentation GBM standard n'a pas de régularisation comme XGBoost, ce qui permet de réduire l'overfitting. En fait, XGBoost est également connu 
comme une technique de "boosting régularisé".

• Traitement parallèle : XGBoost met en œuvre un traitement parallèle et est incroyablement plus rapide que GBM.

Mais attendez, nous savons que le boosting est un processus séquentiel, alors comment peut-il être parallélisé ? Nous savons que chaque arbre ne peut être construit 
qu'après le précédent, alors qu'est-ce qui nous empêche de faire un arbre en utilisant tous les cœurs ? J'espère que vous comprenez où je veux en venir. Consultez ce lien 
pour aller plus loin.

• XGBoost supporte également l'implémentation sur Hadoop.

• Grande flexibilité : XGBoost permet aux utilisateurs de définir des objectifs d'optimisation et des critères d'évaluation personnalisés. Cela ajoute une toute nouvelle 
dimension au modèle et il n'y a aucune limite à ce que nous pouvons faire.

• Traitement des valeurs manquantes : XGBoost dispose d'une routine intégrée pour gérer les valeurs manquantes. L'utilisateur doit fournir une valeur différente des autres
observations et la passer comme paramètre. XGBoost essaie différentes choses lorsqu'il rencontre une valeur manquante sur chaque nœud et apprend quel chemin 
prendre pour les valeurs manquantes à l'avenir.

• Élagage de l'arbre : Un GBM arrête de diviser un nœud lorsqu'il rencontre une perte négative dans la division. Il s'agit donc plutôt d'un algorithme avide. XGBoost, quant 
à lui, effectue des scissions jusqu'à la profondeur maximale spécifiée, puis commence à élaguer l'arbre en arrière et supprime les scissions au-delà desquelles il n'y a 
pas de gain positif. Un autre avantage est que parfois, une division de perte négative, par exemple -2, peut être suivie d'une division de perte positive +10. GBM 
s'arrêtera lorsqu'il rencontrera -2. Mais XGBoost ira plus loin et verra un effet combiné de +8 de la division et gardera les deux.

• Validation croisée intégrée : XGBoost permet à l'utilisateur d'exécuter une validation croisée à chaque itération du processus de boosting et il est donc facile d'obtenir le 
nombre optimal exact d'itérations de boosting en une seule exécution. Contrairement à GBM, où nous devons effectuer une recherche sur grille et où seules quelques 
valeurs peuvent être testées.

• Continuer sur le modèle existant : L'utilisateur peut commencer à former un modèle XGBoost à partir de la dernière itération de l'exécution précédente. Cela peut être un 
avantage significatif dans certaines applications spécifiques. L'implémentation GBM de sklearn possède également cette fonctionnalité, ils sont donc à égalité sur ce 
point.

• Ancien : documentation et beaucoup d’exemples
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5. Modèles – Boosting - LightGBM

LightGBM :

LightGBM est un cadre GBDT open-source créé par Microsoft (2017) comme une alternative rapide et évolutive à 
XGB et GBM. Par défaut, LightGBM entraîne un arbre de décision à boost de gradient (GBDT), mais il prend 
également en charge les forêts aléatoires, les arbres de régression additifs multiples (DART) et l'échantillonnage 
unilatéral basé sur le gradient (Goss).

Light GBM est un cadre rapide, distribué et très performant de boosting de gradient basé sur l'algorithme de l'arbre 
de décision,  basé sur la croissance de l'arbre par feuilles, contrairement aux autres algorithmes qui fonctionnent 
selon une approche par niveaux. Il divise l'arbre par feuille avec le meilleur ajustement alors que d'autres 
algorithmes de boosting divisent l'arbre par profondeur ou par niveau plutôt que par feuille. Ainsi, lors de la 
croissance sur la même feuille dans Light GBM, l'algorithme par feuille peut réduire plus de pertes que l'algorithme 
par niveau, ce qui donne une bien meilleure précision, rarement atteinte par les algorithmes de boosting existants. 
En outre, il est étonnamment très rapide, d'où le terme "léger".



5. Modèles – Boosting - LightGBM
Avantages :

• Vitesse de formation plus rapide et efficacité accrue : Light GBM utilise un 
algorithme basé sur l'histogramme, c'est-à-dire qu'il classe les valeurs de 
caractéristiques continues dans des cases discrètes, ce qui accélère la procédure 
de formation.

• Utilisation réduite de la mémoire : Remplace les valeurs continues par des cases 
discrètes, ce qui réduit l'utilisation de la mémoire.

• Meilleure précision que tout autre algorithme de boosting : Il produit des arbres 
beaucoup plus complexes en suivant une approche de division par feuille plutôt 
qu'une approche par niveau, ce qui est le principal facteur permettant d'obtenir une 
meilleure précision. Cependant, il peut parfois conduire à un surajustement qui peut 
être évité en définissant le paramètre max_depth.

• Compatibilité avec les grands ensembles de données : Il est capable de réaliser 
d'aussi bonnes performances avec de grands ensembles de données avec une 
réduction significative du temps de formation par rapport à XGBOOST.

• Prise en charge de l'apprentissage parallèle.

Inconvénients :

• Over-fitting : Les divisions en feuilles entraînent une augmentation de la complexité 
et peuvent conduire à un surajustement, ce qui peut être résolu en spécifiant un 
autre paramètre, max-depth, qui spécifie la profondeur à laquelle la division aura 
lieu.

• Récent : moins de documentation mais en progression

Hyperparamètres :

max_depth : Spécifie la profondeur maximale à laquelle l'arbre se développera. Ce paramètre est utilisé 
pour gérer l'overfitting.

min_data_in_leaf : Nombre minimum de données dans une feuille.

feature_fraction : default=1 ; spécifie la fraction de caractéristiques à prendre pour chaque itération.

bagging_fraction : default=1 ; spécifie la fraction de données à utiliser pour chaque itération et est 
généralement utilisé pour accélérer l'apprentissage et éviter l'overfitting.

task : valeur par défaut = train ; options = train , prediction ; Spécifie la tâche que nous souhaitons 
effectuer qui est soit train soit prediction.

application : valeur par défaut=regression, type=enum, options= options :

regression : exécuter la tâche de régression

binary : classification binaire

multiclass : Classification multiclasse

lambdarank : application lambdarank

data : type=string ; données d'entraînement, LightGBM s'entraînera à partir de ces données

num_iterations : nombre d'itérations de boosting à effectuer ; default=100 ; type=int

num_leaves : nombre de feuilles dans un arbre ; default = 31 ; type =int

device : default= cpu ; options = gpu,cpu. Dispositif sur lequel nous voulons entraîner notre modèle. 
Choisissez GPU pour un entraînement plus rapide.

min_gain_to_split : default=.1 ; gain min pour effectuer le fractionnement

max_bin : nombre maximum de bacs pour mettre les valeurs des caractéristiques dans des cases.

min_data_in_bin : nombre minimum de données dans un bin.

num_threads : default=OpenMP_default, type=int ;Nombre de threads pour Light GBM.

label : type=string ; spécifier la colonne label

categorical_feature : type=string ; spécifie les caractéristiques catégorielles que nous voulons utiliser pour 
l'entraînement de notre modèle

num_class : default=1 ; type=int ; utilisé uniquement pour la classification multi-classes
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5. Modèles – Boosting - CatBoost
CatBoost est un algorithme d'apprentissage automatique récemment (2017) mis en libre accès par Yandex
(russes) qui s'appuie sur la théorie des arbres de décision et du boosting de gradient. 
Category : la bibliothèque fonctionne bien avec plusieurs catégories de données, telles que l'audio, le texte, 
l'image, y compris les données historiques.
Boosting : "Boost" vient de l'algorithme d'apprentissage automatique Gradient Boosting, car cette bibliothèque 
est basée sur la bibliothèque Gradient Boosting. 

Dans la procédure de croissance des arbres de décision, CatBoost ne suit pas les modèles 
similaires de boosting de gradient. Au lieu de cela, CatBoost fait croître des arbres oblivious, ce qui 
signifie que les arbres sont cultivés en imposant la règle selon laquelle tous les nœuds au même 
niveau, testent le même prédicteur avec la même condition, et donc l'index d'une feuille peut être 
calculé avec des opérations bitwise. La procédure d'arbre oblivious permet un schéma d'ajustement 
simple et efficace sur les CPU, tandis que la structure de l'arbre fonctionne comme une 
régularisation pour trouver une solution optimale et éviter l'overfitting.

Avantage :

CatBoost peut traiter automatiquement les variables catégorielles, les données audio, texte.., ne nécessite pas de prétraitement 
approfondi des données comme d'autres algorithmes d'apprentissage automatique. Performant .Robuste (peu de réglage 
d’hyperparamètres). Feature importances. Utilisation GPU. Gère valeurs manquantes. Régression/Classification.

Inconvénient :

- Long si pas GPU. Récent : pas de documentation et peu d’exemples.



5. Modèles – Boosting - CatBoost
Hyperparamètres :

loss_function : alias as objective - Métrique utilisée pour l’apprentissage. Il s'agit de métriques de 
régression telles que l'erreur quadratique moyenne pour la régression et le logloss pour la 
classification.

Iterations : Le nombre maximum d'arbres qui peuvent être construits. Le nombre final d'arbres 
peut être inférieur ou égal à ce nombre (1000 par défaut).

learning_rate : - Le taux d'apprentissage qui détermine la rapidité ou la lenteur de l'apprentissage 
du modèle. La valeur par défaut est généralement de 0,03. Utilisé pour réduire le pas du gradient.

border_count : Il spécifie le nombre de splits pour les caractéristiques numériques. Il est similaire 
au paramètre max_bin.

depth : Définit la profondeur des arbres.

eval_metric - Métrique utilisée pour détecter le surajustement.

random_seed : La graine aléatoire utilisée pour l'apprentissage.

l2_leaf_reg alias reg_lambda - Coefficient du terme de régularisation L2 de la fonction de coût. La 
valeur par défaut est 3,0.

min_data_in_leaf alias min_child_samples - Il s'agit du nombre minimum d'échantillons 
d'entraînement dans une feuille. Ce paramètre est uniquement utilisé avec les politiques 
Lossguide et Depthwise growing.

max_leaves alias num_leaves - Ce paramètre est utilisé uniquement avec la politique Lossguide
et détermine le nombre de feuilles dans l'arbre.

ignored_features - Indique les caractéristiques qui doivent être ignorées dans le processus de 
formation.

bootstrap_type - Détermine la méthode d'échantillonnage pour les poids des objets, 
par exemple Bayesian, Bernoulli, MVS et Poisson.

grow_policy - Détermine la façon dont l'algorithme de recherche gloutonne sera 
appliqué. Il peut être soit SymmetricTree, Depthwise, ou Lossguide. SymmetricTree
est la valeur par défaut. Dans SymmetricTree, l'arbre est construit niveau par niveau 
jusqu'à ce que la profondeur soit atteinte. À chaque étape, les feuilles de l'arbre 
précédent sont divisées avec la même condition. Lorsque l'option Depthwise est 
choisie, un arbre est construit étape par étape jusqu'à ce que la profondeur spécifiée 
soit atteinte. À chaque étape, toutes les feuilles non terminales du dernier niveau de 
l'arbre sont séparées. Les feuilles sont divisées en utilisant la condition qui entraîne 
la meilleure amélioration des pertes. Dans Lossguide, l'arbre est construit feuille par 
feuille jusqu'à ce que le nombre de feuilles spécifié soit atteint. À chaque étape, la 
feuille non terminale présentant la meilleure amélioration des pertes est divisée.

nan_mode - Méthode de traitement des valeurs manquantes. Les options sont 
Interdit, Min et Max. La valeur par défaut est Min. Lorsque l'option Forbidden est 
utilisée, la présence de valeurs manquantes entraîne des erreurs. Avec Min, les 
valeurs manquantes sont considérées comme les valeurs minimales pour cette 
caractéristique. Avec Max, les valeurs manquantes sont traitées comme la valeur 
maximale pour cette caractéristique.

leaf_estimation_method - La méthode utilisée pour calculer les valeurs dans les 
feuilles. Dans la classification, 10 itérations de Newton sont utilisées. Les problèmes 
de régression utilisant la perte quantile ou MAE utilisent une itération Exact. La 
classification multiple utilise une itération Netwon.

leaf_estimation_backtracking - Le type de backtracking à utiliser pendant la 
descente de gradient. La valeur par défaut est AnyImprovement. AnyImprovement
réduit le pas de descente, jusqu'à ce que la valeur de la fonction de perte soit plus 
petite que lors de la dernière itération. Armijo réduit le pas de descente jusqu'à ce 
que la condition Armijo soit remplie.



5. Modèles – Boosting - CatBoost
Hyperparamètres :

boosting_type - Le schéma de boosting. Il peut être simple pour le schéma classique 
de boosting par gradient, ou ordonné, qui offre une meilleure qualité sur les petits 
ensembles de données.

score_function - Le type de score utilisé pour sélectionner la prochaine division 
pendant la construction de l'arbre. Cosinus est l'option par défaut. Les autres options 
disponibles sont L2, NewtonL2 et NewtonCosine.

early_stopping_rounds - Lorsque True, définit le type de détecteur d'overfitting à Iter
et arrête l'apprentissage lorsque la métrique optimale est atteinte.

classes_count - Le nombre de classes pour les problèmes de multi-classification.

task_type - Si vous utilisez un CPU ou un GPU. CPU est la valeur par défaut.

devices - Les ID des périphériques GPU à utiliser pour la formation.

cat_features - Le tableau avec les colonnes catégoriques.

text_features - Utilisé pour déclarer les colonnes de texte dans les problèmes de 
classification.

Avantage :

• CatBoost peut traiter automatiquement les variables 
catégorielles et ne nécessite pas de prétraitement approfondi 
des données comme d'autres algorithmes d'apprentissage 
automatique. Performant .

• Robuste (peu de réglage d’hyperparamètres).

• Feature importances. 

• Utilisation GPU. 

• Gère valeurs manquantes. 

• Elle produit des résultats de pointe sans la formation intensive 
des données généralement requise par les autres méthodes 
d'apprentissage automatique, et

• Elle offre une prise en charge puissante et prête à l'emploi des 
formats de données plus descriptifs qui accompagnent de 
nombreux problèmes commerciaux.
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5. Modèles – Ensemblistes - Stacking

Stacking :
Apprendre plusieurs apprenants faibles différents et les combiner en formant un méta-modèle pour produire des 
prédictions basées sur les multiples prédictions renvoyées par ces modèles faibles. 

Ainsi, nous devons définir deux choses afin de construire notre modèle de stacking : les L learners que nous voulons 
adapter et le méta-modèle qui les combine.

 diviser les données d'apprentissage en deux plis
 choisir L apprenants faibles et les adapter aux données du premier pli
 pour chacun des L apprenants faibles, faire des prédictions pour les observations 

du second pli
 ajuster le méta-modèle sur le second pli, en utilisant les prédictions faites par les 

apprenants faibles comme entrées.

Une extension possible du stacking est le stacking multi-niveaux. 
Elle consiste à faire un empilage avec plusieurs couches. 

Désavantage :

l'ajout de niveaux peut être soit coûteux en données (si la technique des k-
folds n'est pas utilisée et que, par conséquent, davantage de données sont 
nécessaires), soit coûteux en temps (si la technique des k-folds est utilisée 
et que, par conséquent, de nombreux modèles doivent être ajustés).
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6. Comparer modèles

85

La qualité d'une fonction est généralement évaluée à l'aide d'une fonction de perte. 
Compte tenu d'un problème, d'un type de modèle et d'une fonction de perte choisis, la tâche de recherche du meilleur 
modèle est exprimée en un problème d'optimisation. 
Ici, nous essayons de minimiser une fonction de coût par rapport aux paramètres du modèle (pour un modèle linéaire, les 
coefficients (ou poids) et le biais). Une fonction de coût est la moyenne des pertes calculées sur tous les ensembles de 
données d'apprentissage. 
Fonctions de perte de régression :
1. Mean Squared Error (Erreur quadratique moyenne)/ perte quadratique (MSE) 
2. Erreur absolue moyenne (MAE) 
3. Smooth MAE 
4. Log cosh Loss
5. sPerte quantile

Problème d'optimisation/ Minimisation des coûts : 
l'objectif est de trouver les paramètres du modèle (poids 
et biais) qui minimisent la fonction de coût. 
L'optimisation est réalisée à l'aide d'algorithmes comme 
la descente de gradient, la descente de gradient 
stochastique, etc.



6. Comparer modèles
Mesure de la performance du modèle :

Mean Square Error (MSE)  L2 est la fonction de perte 
de régression la plus couramment utilisée. MSE est la 
somme des distances au carré entre notre variable cible 
et les valeurs prédites.

Mean Absolute Error (MAE) L1 est une autre fonction 
de perte utilisée pour les modèles de régression. MAE 
est la somme des différences absolues entre nos 
variables cibles et prédites. Elle mesure donc la 
magnitude moyenne des erreurs dans un ensemble de 
prédictions, sans tenir compte de leurs directions. Plus 
robustes aux outliers. PB son gradient est le même 
partout, ce qui signifie que le gradient sera important 
même pour de petites valeurs de perte. Ce n'est pas 
bon pour l'apprentissage.  Pas utiliser pour les réseaux 
de neurones. Si les valeurs aberrantes représentent des 
anomalies importantes pour l'entreprise et doivent être 
détectées, alors nous devrions utiliser MSE. En 
revanche, si nous pensons que les valeurs aberrantes 
représentent simplement des données corrompues, 
nous devrions choisir MAE comme perte.



6. Comparer modèles
Mesure de la performance du modèle : MAE: l'erreur absolue moyenne représente la moyenne de 

la différence absolue entre les valeurs réelles et prédites 
dans l'ensemble de données. Elle mesure la moyenne des 
résidus dans l'ensemble de données.

MSE : l'erreur quadratique moyenne représente la moyenne 
de la différence au carré entre les valeurs originales et 
prédites dans l'ensemble de données. Elle mesure la 
variance des résidus.

RMSE : l'erreur quadratique moyenne est la racine carrée 
de l'erreur quadratique moyenne. Elle mesure l'écart-type 
des résidus.

R2 : Le coefficient de détermination ou R-carré représente 
la proportion de la variance de la variable dépendante qui 
est expliquée par le modèle de régression linéaire. Il s'agit 
d'un score sans échelle, c'est-à-dire qu'indépendamment du 
fait que les valeurs soient petites ou grandes, la valeur du 
carré R sera inférieure à un.

Le R² ajusté est une version modifiée du R², et il est ajusté pour 
le nombre de variables indépendantes dans le modèle, et il sera 
toujours inférieur ou égal au R². Dans la formule ci-dessous, n est 
le nombre d'observations dans les données et k est le nombre de 
variables indépendantes dans les données.



6. Comparer modèles
Différences entre ces mesures d'évaluation :

• MSE et RMSE pénalisent les erreurs de prédiction importantes par 
rapport à la MAE. Cependant, RMSE est plus largement utilisée que 
MSE pour évaluer la performance du modèle de régression avec 
d'autres modèles aléatoires car elle a les mêmes unités que la variable 
dépendante (axe Y).

• La MSE est une fonction différentiable qui facilite les opérations 
mathématiques par rapport à une fonction non différentiable comme la 
MAE. Par conséquent, dans de nombreux modèles, lRMSE est utilisée 
comme métrique par défaut pour calculer la fonction de perte, bien 
qu'elle soit plus difficile à interpréter que la MAE.

• MAE est plus robuste aux données comportant des valeurs aberrantes.

• Une valeur plus faible de MAE, MSE et RMSE implique une plus 
grande précision d'un modèle de régression. Cependant, une valeur 
plus élevée du R carré est considérée comme souhaitable.

• Le R au carré et le R au carré ajusté sont utilisés pour expliquer dans 
quelle mesure les variables indépendantes du modèle de régression 
linéaire expliquent la variabilité de la variable dépendante. La valeur du 
R carré augmente toujours avec l'ajout des variables indépendantes, ce 
qui pourrait conduire à l'ajout de variables redondantes dans notre 
modèle. Cependant, le R au carré ajusté résout ce problème.

• Le R au carré ajusté prend en compte le nombre de variables 
prédictives, et il est utilisé pour déterminer le nombre de variables 
indépendantes dans notre modèle. La valeur du R au carré ajusté 
diminue si l'augmentation du R au carré par la variable supplémentaire 
n'est pas assez significative.

• Pour comparer la précision de différents modèles de régression linéaire, 
la RMSE est un meilleur choix que le R au carré.

• Par conséquent, si l'on compare la précision de prédiction entre 
différents modèles de régression linéaire (LR), la RMSE est une 
meilleure option car elle est simple à calculer et différentiable. Toutefois, 
si votre ensemble de données comporte des valeurs aberrantes, 
choisissez MAE plutôt que RMSE.

• En outre, le nombre de variables prédicteurs dans un modèle de 
régression linéaire est déterminé par le R au carré ajusté, et choisissez 
RMSE plutôt que R au carré ajusté si vous vous souciez d'évaluer la 
précision de la prédiction parmi différents modèles LR.


